Registros para medir porosidades en el yacimiento.

La porosidad de las rocas puede obtenerse a partir del registro sónico, el registro de densidad o el registro de neutrones. Todas estas herramientas ven afectada su respuesta por la porosidad, los fluidos y la matriz de la formación. Si los efectos de fluidos y matriz se conocen o se pueden determinar, la respuesta de la herramienta puede relacionarse con la porosidad. Por lo tanto, estos instrumentos se mencionan con frecuencia como registros de porosidad.
Tres técnicas de registro responden a las características de la roca adyacente al agujero. Su profundidad de investigación es de solo unas cuantas pulgadas y por lo tanto esta generalmente dentro de la zona invadida.

Otras mediciones petrofísicas, como la micro resistividad, el magnetismo nuclear o la propagación electromagnética, algunas veces se utilizan para determinar la porosidad. Sin embargo, estos instrumentos también reciben una gran influencia del fluido que satura los poros de la roca.


REGISTRO SÓNICO.
En su forma más sencilla, una herramienta sónica consiste de un trasmisor que emite impulsos sónicos y un receptor que capta y registra los impulsos. El registro sónico es simplemente un registro en función del tiempo, t, que requiere una onda sonora para atravesar un pie de formación. Esto es conocido como tiempo de transito, delta t, t es el inverso de la velocidad de la onda sonora. El tiempo de transito para una formación determinada depende de su litología, esta dependencia de la porosidad hace que el registro sónico sea muy útil como registro de porosidad. Los tiempos de transito sónicos integrados también son útiles al interpretar registros sísmicos. El registro sónico puede correrse simultáneamente con otros servicios.

El principio consiste en la propagación del sonido en un pozo es un fenómeno complejo que está regido por la propiedades mecánicas de ambientes acústicos diferentes. Estos incluyen la formación, la columna de fluido del pozo y la misma herramienta del registro. El sonido emitido del transmisor choca contra las paredes del agujero. Esto establece ondas de compresión y de cizallamiento dentro de la formación, ondas de superficie a lo largo de la pared del agujero y ondas dirigidas dentro de la columna de fluido.

En el cado de los registros de pozos, la pared y la rugosidad del agujero, las capas de la formación y las fracturas pueden representar discontinuidades acústicas significativas.





REGISTROS DE DENSIDAD.
Los registros de densidad se usan principalmente como registros de porosidad. Otros usos incluyen identificación de minerales en depósitos de evaporitas, detección de gas, determinación de la densidad de hidrocarburos, evaluación de arenas con arcillas y litologías complejas, determinación de producción de lutitas con contenido de aceite, calculo de presión de sobrecarga y propiedades mecánicas de las rocas.

El principio consiste en una fuente radioactiva, que se aplica a la pared del agujero en un cartucho deslizable, emite a la formación rayos gamma de mediana energía. Se puede considerar a estos rayos gamma como partículas de alta velocidad que chocan con los electrones en la formación. Con cada choque, los rayos gamma pierden algo de su energía, aunque no toda, la ceden al electrón y continúan con energía disminuida, esta clase de interacción se conoce como efecto Compton. Los rayos gamma dispersos que llegan al detector, que está a una distancia fija de la fuente, se cuentan para indicar la densidad de la formación. El número de colisiones en el efecto Compton está directamente relacionado con el número de electrones de la formación.



REGISTROS NEUTRONICOS.
Estos registros se utilizan principalmente para delinear las formaciones porosas y para determinar su porosidad. Responden principalmente a la cantidad de hidrogeno en la formación. Por lo tanto, en formaciones limpias cuyos poros estén saturados con agua o aceite el registro de neutrones refleja la cantidad de porosidad saturada de fluido.
Las zonas de gas con frecuencia pueden identificarse al comparar el registro de neutrones con otro registro de porosidad o con un análisis de muestras. Una combinación del registro de neutrones con uno o más registros de porosidad e identificación litológica aun más exactos, incluso una evaluación del contenido de arcilla.

Los neutrones son partículas eléctricamente neutras; cada una tiene una masa casi idéntica a la masa de un átomo de hidrogeno. Una fuente radioactiva en la sonda emite constantemente neutrones de alta energía (rápidos). Estos neutrones chocan con los núcleos de los materiales de la formación en lo que podría considerarse como colisiones elásticas de bolas de billar. Con cada colisión, el neutrón pierde algo de energía.

La cantidad de energía perdida por colisión depende de la masa relativa del núcleo con el que choca el neutrón. La mayor pérdida de energía ocurre cuando el neutrón golpea un núcleo con una masa prácticamente igual, es decir un núcleo de hidrogeno. Las colisiones con núcleos pesados no desaceleran mucho al neutrón. Por lo tanto la desaceleración de neutrones depende en gran parte de la cantidad de hidrogeno de la formación.



Fuente: Schlumberger. Aplicaciones de la interpretacion de registros.

Entradas populares de este blog

Producción.

Erosión por Cavitación

Facies