LEY DE POISEUILLE PARA FLUJO CAPILAR.

Distribución de la velocidad en flujo capilar viscoso (laminar).
La rata volumétrica de flujo a través del elemento de espesor dr es dq= v*Da, donde el area Da=2πdr. Luego la rata de flujo total a través del tubo es la integral de estos flujos elementales individuales o:
ecuacion 6.19.
Esta expresión es denominada ley de Poiseiulle para flujo laminar (viscoso) de líquido a través de tubos capilares. La rata de flujo de un fluido de 0.015 poises a través de un capilar de 0.10 cm de radio, 25 cm de largo y bajo una presión diferencial de 300 dinas por cm2 es:
Q= 3.14*(0.10)4*300/8*0.015*25=0.0314 cm3/s.
Klikenberg dedujo una ecuación similar a la ecuación anterior (6.19) para flujo de gas, asumiendo una velocidad finita de deslizamiento del gas en la pared del tubo capilar, ya que el gas no es una sustancia humectante. Comparando las dos ecuaciones, puede concluirse que la permeabilidad de los gases es mayor que la de los líquidos, y la diferencia se acentúa para rocas de menor permeabilidad, menores presiones medias de flujo de gas y menores pesos moleculares de los gases. En el laboratorio se han obtenidos medidas de permeabilidad al aire a una presión media de dos atmosferas, entre 1.0 y 100 mD, mostrando los resultados aumentos sobre la permeabilidad del liquido, desde porcentajes muy bajos hasta el 100 por ciento. Como el efecto varia inversamente con la presión media del gas, es de poca importancia a las presiones comunes de los yacimientos.
La ley de Darcy para el flujo lineal de líquidos en capas permeables y la ley de Poiseiulle para el flujo capilar de líquidos son bastante similares. La ley de Darcy expresada en términos de cm 3 por segundo, poises, cm, dinas por cm3 y Darcys es:
Q=9.86*10-9*KA*(p1 – p2)/µ*L
Escribiendo A= π r2 para el área en la expresión de la ley de Darcy, e igualándola a la ecuación (6.19)
K=12.7*104*r3, Darcys.
Por lo tanto la permeabilidad de una roca compuesta de tubos capilares compactamente empacados, de 0.0001 pulgada en diámetro es cerca de 0.20 D O 200mD. Y si solo 25 por ciento de la roca son canales porosos la permeabilidad será solo la cuarta parte o cerca de 50 mD.
Fuente: B.C. Craft y M.F Hawkins.